Identification of Shy Albatross The chapter in Frontiers of Bird Identification on albatross identification (Warham et al. 1980) prompts me to record the following. On 26th January 1979, I studied several Shy Albatrosses Diomedea cauta that flew past our vessel in the southeast Atlantic (32° 27’S, 16° 35’E) in the presence of the ship-following Yellow-nosed D. chlororhynchos and Black-browed Albatrosses D. melanophris. Unlike the last two, the Shy Albatrosses always planed past the vessel, disregarding the scramble for food scraps, thus making comparative observations extremely difficult, or often impossible. The fact that observations are often made at considerable distances and in harsh or weak light serves to stress the importance of finding easily observable field marks. The most distinctive character of Shy Albatross is the presence of a black pre-axillary notch formed by a bulbous basal extension of the otherwise thin black leading edge on the underwing, a feature illustrated several times, both in articles and in field guides (McLachlan & Liversidge 1978; Tuck & Heinzel 1978; Sinclair 1979; Warham et al. 1980). When confronted with an albatross with dark upperwing and mantle (mollymawk-type), the combination of thin dark underwing margins and a striking black notch on the underwing at the base of the leading edge is diagnostic of Shy. These two characters are easily observable at great distances and in poor light and are obviously much more helpful than the oft-quoted blue-grey tinge of the lateral bill-plates or the contrast between shadowed eye and pale crown. J. A. KIESER
Glenanda Shopping Center, Vorster Avenue, Glenanda 2190, Johannesburg, South Africa

REFERENCES

Dr John Warham has commented that a small dark mark at the base of the leading edge of the wing is indeed a useful character, known for quite a long time by those accustomed to identifying mollymawks. It is mentioned in The Handbook of Australian Sea Birds (1971), and is specifically referred to as a characteristic of all three subspecies (cauta, salvini and eremita) of Shy Albatross in New Zealand Albatrosses and Petrels (1974) and in Southern Albatrosses and Petrels (1978). EDS

Post-juvenile moult of Rose-coloured Starling The last paragraph in ‘Mystery photographs’ 45 (Brit. Birds 73: 409) suggests some tentative explanations for the occurrence of Rose-coloured Starlings Sturnus roseus in late autumn and early winter in apparently unseasonal full juvenile plumage. I would suggest, however, that the facts known about the moult of starlings are basically correct: juveniles (and adults) have just one moult each year: a complete one in late summer to autumn. The juvenile Rose-
Letters

coloured would moult into an adult-like winter plumage with buff fringes, which wear off in spring to reveal the pink and glossy-black plumage of summer. The Starling *S. vulgaris* does the same, acquiring summer plumage by abrasion of the white-tipped winter plumage. I feel a more likely explanation for the existence of juvenile plumage in late autumn is the timing of this moult. It seems likely that the Rose-coloured Starling, owing to its early departure from the breeding quarters (Ali & Ripley 1972), is one of the several species of passerine that do not perform their moult until arrival on their wintering grounds. Any individuals carried in the opposite direction towards Britain may, therefore, delay this moult until the migration ceases. The seemingly inaccurate statement in *The Handbook*, that the juveniles moult completely ‘August to October’, may be correct for on-course migrants, but not for vagrants in western Europe. In contrast, the Starling is a generally much later migrant, and has time for the complete moult before migration.

In 1958-79, there have been 13 accepted records of juvenile Rose-coloured Starlings in Britain and Ireland, all between 23rd August and 9th November. Of these, only one showed active wing- and tail-moult: an individual trapped on Bardsey, Gwynedd, in early October 1979. This bird was very peculiar (plates 9-11). The left wing had four new, virtually fully-grown inner primaries; the rest of the wing was old. The feathers of the right wing were all old, except for the innermost primary, which was just two-thirds grown. The tail was old except for two fully-grown new outer feathers on the right side. The only other details of moulting juveniles in Britain come from two trapped on Fair Isle, Shetland: one on 15th November 1929 had symmetrical wing moult, the inner two primaries being replaced, but one tertial moulted out of sequence on the right wing, and the tail an erratic mixture of new and old feathers fully-grown; the other, on 28th October 1938, was in the same stage of symmetrical wing-moult, but no tail-moult; neither showed any sign of body-moult. As most passerines should normally moult in a very strict and symmetrical order, these examples of late and asymmetrical moult might be due to some disruption of the bodily functions controlling moult, caused by the stress of being a totally ‘off-course’ vagrant.

Another possible and often-argued explanation is that at least some individuals are ‘escapes’. Goodwin (1956) stated ‘the Rosy Starling has been often for sale’; conversely, England (1974) stated ‘Does not deserve its reputation as “inevitably an escape” though possible. Not a ready breeder in captivity, so immatures less suspect.’ (The dullness often noted in adults could be caused equally by the buff-tipped winter plumage obscuring the pink, or by very worn summer plumage, especially in a bird delaying its moult, as by loss of pigmentation or ‘condition’ through captivity.) The state of the left wing of the Bardsey individual (plate 11) further exacerbates the argument: three of the old, central primaries are broken off in a line, and this line of breakage continues across the other two whole, outer primaries. Goodwin (1956) discussed the difference between feather breakage caused by captivity, which is often random, and what he termed ‘fretmarking’, a natural process caused basically by interrupted feather growth. Svensson
(1975) called the process ‘fault-barring’ and explained it fully: if feather growth is halted in fledglings (which are growing their rectrices and remiges simultaneously), then distinct lines are visible across the feathers, these often being lines of weakness where a feather will break or wear more readily. The Bardsey individual has convincing natural fault-barring (rather than random breakage) on one wing, but no sign of this on the other wing or tail, which, theoretically, it should have.

My thanks are due to M. J. Rogers, who provided much information from the *British Birds* Rarities Committee files.

P. J. Roberts
Bardsey Bird Observatory, via Aberdaron, Pwllheli, Gwynedd LL53 8DE

References

Lesser coverts of Pallas’s Reed Bunting: correction The significance of the colour of the lesser coverts of Reed Bunting *Emberiza schoeniclus* as a distinguishing feature from Pallas’s Reed Bunting *E. pallasii* was unknown
to me when I wrote earlier (Brit. Birds 72: 98-100). Vaurie (1956, Amer. Mus. Nov. 22: 5-6) gave the lesser coverts as the most conspicuous colour difference separating males, those of Pallas’s being ‘ashy grey or blackish’; Svensson (1975, Identification Guide to European Passerines) gave the lesser coverts of Pallas’s as ‘ash-grey (male) or buffish grey-brown (female)’; a worn female on Fair Isle, Shetland, had grey lesser coverts (Brit. Birds 73: 402-408); and 40 specimens at the National Museum of Natural History, Washington, have lesser coverts ‘dark grey (male) or greyish brown (female)’ (C. Wilds in litt.). On returning to Mongolia in 1979, I found that, in bright light, the lesser coverts of adult female and juvenile Pallas’s Reed appeared ‘warm brown’ (Brit. Birds 73: 398-401), but appear buffish-grey or brownish-grey on two photographs I took, and blackish on one adult male. I conclude that my original statement was erroneous and that the colour of the lesser coverts serves as a distinction between Reed and Pallas’s Reed Buntings. I am grateful to C. Wilds for raising this issue.

ALAN R. KITSON

12 Hillside Terrace, Steyning, West Sussex