Identification of male Spectacled Warbler

With the acceptance of the male Spectacled Warbler *Sylvia conspicillata* at Filey, North Yorkshire, in May 1992 (*Brit. Birds* 87: 554; *Ibis* 136: 254), following the reassessment and subsequent rejection of the previously accepted records (*Brit. Birds* 83: 482-483; 84: 431-432; *Ibis* 133: 219-223), it may be helpful to clarify the identification of male Spectacled Warbler in spring. Since 1988, I have studied the species in the field in Portugal, Mallorca and Cyprus during the months of March to June, as well as examining skins at the Natural History Museum, Tring.

The identification of Spectacled Warbler was recently covered in detail by Hadoram Shirihai, Alan Harris & David Cottridge (*Brit. Birds* 84: 423-430). Key features distinguishing Common Whitethroat *S. communis* and Subalpine Warbler *S. cantillans* from Spectacled Warbler were discussed, mostly in relation to the ‘difficult’ female and first-winter plumages. Males in spring, generally regarded as ‘easier’, were to some extent neglected, and this note aims to complement the earlier paper.

STRUCTURE AND BEHAVIOUR

Spectacled is smaller and slimmer than Common Whitethroat, and the first impression is of a small nervous, ‘excited’ *Sylvia* warbler, more akin to Desert *S. nana* or Dartford Warbler *S. undata*. When flushed, its flight recalls that of a leaf-warbler *Phylloscopus* or a tit *Parus*, and it often disappears low into vegetation, from which it may then hop along the ground (again resembling Desert or Dartford Warblers) or inquisitively work its way towards the top of the bush, where it may sing, call or fly off.

When relaxed, Spectacled has a distinctive head shape, similar to that of a Desert Warbler or Lesser Whitethroat *S. curruca*: a steep forehead flattens onto the crown, forming a more rounded head shape than that of Common Whitethroat, with the bill appearing quite long and spiky. The wing structure is also different from that of Common Whitethroat (cf. Svensson 1992), most notably in its short primary extension and the fact that the closed wing seems to occupy a smaller proportion of the total area on the bird. Given good views, it is possible to see the short projection of the primaries beyond the tertials on Spectacled Warbler—about four (or five), which bunch towards the wing tip—compared with the longer projection on Common Whitethroat—six or seven (sometimes eight) evenly spaced primary tips. The shortness of the wing helps to emphasise the impression of a proportionately long tail, and together these features contribute to the species’ distinctive character.

The call of Spectacled is a characteristic ‘tchrrr’ or ‘tchh tchh’. The song is like that of Common Stonechat *Saxicola torquata*, but more rapid and with harsher notes.

PLUMAGE AND BARE PARTS

Although behaviour and structure may suggest this species, plumage details are...
Fig. 1. Spectacled Warblers *Sylvia conspicillata* (Brian Small)
Top left, first-winter male; middle, adult male in spring; right, adult male in autumn.
Centre bird, adult female in autumn.
Bottom bird, first-winter female.
Wings: left, adult Spectacled in autumn; middle, adult Common Whitethroat *S. communis* in autumn; right, first-winter Subalpine Warbler *S. cantillans*.
crucial to its identification. In particular, observations should concentrate on the head, wing-coverts and tertials, as well as the underparts, rump and tail.

On the head, the most important feature is the black loral area, which extends more or less above the eye, onto the crown sides, and below it, onto the anterior ear-coverts. The black accentuates the white crescents above and below the eye. The black may be mottled with dark grey on first-summers or be obscured by pale grey feather tips when newly moulted, in autumn, winter or early spring. The crown and ear-coverts are a deep blue-grey, slate-grey or indigo-grey (recalling the colour of a male Red-footed Falcon Falco vespertinus). The nape and mantle feathers are usually tipped tawny, sometimes appearing greyish or brownish depending upon wear.

The wing-coverts and tertials are the most crucial areas to examine. These are an extremely bright rufous, almost orange after the complete autumn moult, but less so in spring, when the feathers are worn. The greater coverts in autumn appear as a plain area of orange-rufous (actually a rich raw sienna), but with close scrutiny they can be seen to have orange-rufous outer webs and darker, browner inner webs; these dark areas may appear on worn and displaced coverts in spring. On the tertials, the contrast between the black feather centres and the bright rufous or orange-rufous fringes creates a neater, more contrasting pattern than that on Common Whitethroat. The shape of the tertial centres is a thin, pointed 'arrowhead', especially on the inner two, but more rounded on the longest.

The white chin, throat and sub-moustachial area contrast with the black lores. A grey area appears as a result of abrasion on the throat, being most noticeable in June, thus reducing the extent of white. The breast and flanks are orange-pink in fresh plumage, abrading to a more intense vinous-pink, like the skin of a peach; the colour grades into the white of the belly and the off-white or buffish-white of the vent.

The grey rump contrasts with the browner mantle, and grades darker onto the central tail feathers. The prominent white on the outer rectrices contrasts markedly in flight with the very dark (almost black) inner feathers.

The bill of Spectacled Warbler is slender and pointed, with a dark, horn-black upper mandible and tip to the lower, and ochre-pink or straw-pink (more or less yellow) lower mandible and cutting edge of the upper. The legs are more intense in colour, being orange or straw. The orbital ring was noted by Svensson (1992) as brick-red, but on most of those of which I have had good views it has appeared as a black outline to the olive or reddish-brown iris (cf. Shirihai 1988). In my experience, the eye always looks darker than that of Common Whitethroat.

BRIAN SMALL
20 Willow Green, Worlingworth, Suffolk IP13 7LP

References
Carrion Crows killing several Northern Lapwings

Just after 08.00 GMT on 12th November 1992, at Pitsford Reservoir, Northamptonshire, I witnessed up to eight Carrion Crows *Corvus corone* acting in a particularly aggressive manner. My attention was drawn to a nearby flock of Northern Lapwings *Vanellus vanellus* in a cereal field, when at least one of the plovers shrieked in alarm and the flock took flight. In typical fashion when alert to a hunting raptor, the flock tightened and swirled upwards. At least two Carrion Crows flew swiftly across the field as I looked in vain for the expected Eurasian Sparrowhawk *Accipiter nisus* or something similar. Failing to locate a predator, I watched the crows in case they had managed to latch on to it. One of them was standing in the field right next to a Lapwing which was clearly disabled and unable to fly; the Carrion Crow quickly killed the Lapwing with two or three heavy stabs to the head. At this point, I assumed that the Lapwing had been downed by the unseen raptor, and the Carrion Crow, ever the opportunist, had simply taken advantage of an easy meal. The second crow joined the first, and the unfortunate victim was plucked with much gusto.

As I watched, several other Carrion Crows (seemingly linked in pairs) arrived in the same field, by which time the Lapwings had returned. During the next 15-20 minutes, all of the Carrion Crows attacked and killed a total of eight Lapwings. Each attack was the same: a single crow (but not the same one each time) would fly quickly towards a single Lapwing which was either on the ground or flying low over it; with incredible ease, the crow would tumble a flying Lapwing, breaking or dislocating a wing, then land alongside the incapacitated victim and quickly kill it with downward stabs; Lapwings caught on the ground were simply stabbed in the head or upper breast. The victims were normally killed before a second crow arrived, and the pair usually demonstrated with head-bowing and raucous cawing. All of the Lapwings which were pursued and killed had appeared to be perfectly healthy.

Only one Lapwing was plucked and eaten, and more than just the original two Carrion Crows fed from this corpse. The remaining Lapwings were mostly ignored shortly after the fatal blow. On scanning the field, I noticed several other Lapwing bodies strewn around; there were also two injured Lapwings, which were soon spotted by the crows and similarly despatched.

Although aggression is common between Carrion Crows, I have never seen such behaviour targeted at an unrelated species. I find it hard to accept that this massacre was food-related, and I think it likely to be an ‘aggressive display’ between rival pairs.

The field is regularly used by flocks of Northern Lapwings and small numbers of Carrion Crows, but I have not witnessed any interaction before or since. The Lapwings soon ‘forgot’ the event and ceased to give alarm calls when the corvids were in their midst.

Neil McMahon

Oriole House, 5 The Croft, Hanging Houghton, Northamptonshire NN6 9HW

EDITORIAL COMMENT Most members of the Behaviour Notes Panel found this account amazing and had never seen anything similar, but Derek Goodwin commented: ‘I am also surprised that a healthy Lapwing, unless very tired for
some reason, could be caught by a crow. I have, however, frequently seen the male and more rarely the female (though very often unsure which sex) of a pair of Carrion Crows that come daily to my garden make such attacks in fast flight, and most often in a fast swoop, from the air or high in an oak Quercus, which culminates in an astonishingly fast-seeming pursuit flight, on Magpies Pica pica, Eurasian Jays Garrulus glandarius, Wood Pigeons Columba palumbus, domesticated Rock Doves C. livia and Collared Doves Streptopelia decaocto. So far, I have never seen the attacked bird actually grappled with, but I felt sure that the Carrion Crow would have attacked in earnest had it managed to catch the bird it flew at. Magpies appear to be positively hated, and the Carrion Crow will turn and swerve with great agility, but so far without success. Jays are “next on the list”, but seldom give a Carrion Crow what appears to be a good enough chance (more or less in the open) to stimulate the sudden “hawk-like” attack. Magpies and Wood Pigeons, though they appear terrified during a chase, often return at once, and if the crow is on the lawn they may feed quite near it. The Carrion Crows never swoop at feeding Common Starlings Sturnus vulgaris (though these are eating the same food), but when just-fledged young Starlings are there they often fly suddenly at one to try to catch it, although I have not seen them succeed.

‘I think that Mr McMahon’s idea that there was an element of redirected aggression by rival pairs of Carrion Crows (not of course in the case of the initial strike) is probably right. His observations that the second-comers were “seemingly linked in pairs” and the mutual display when its mate joined a “killer” ring very true.’

Nest-sharing by female Blue Tits

In spring 1988, while inspecting nestboxes in Marley Wood, Wytham, Oxfordshire, I discovered two female Blue Tits Parus caeruleus incubating simultaneously in the same nest. Egg-laying commenced on 28th April, and on 11th May a female at least two years old was trapped and ringed while incubating an apparently complete clutch of three eggs, one of which was abnormally small. On 16th May, I found two females, the original one and an unringed first-year, side by side in the nest cup, both in the normal incubating posture, and facing in the same direction; both had well-developed brood patches. A third Blue Tit of unknown sex arrived, and gave alarm calls in the vicinity of the nest in response to alarm calls given by the females on release after examination. This third tit may, however, have been one of a pair nesting in an adjacent box. Both females were still incubating together on 31st May, well after the eggs should have hatched. By 6th June, the eggs were abandoned, presumably because they were infertile.

Nest-sharing, with more than one female using the same nest simultaneously for breeding, is not unknown among passerines, but simultaneous sharing of a nest cup is extremely unusual. Sharing is occasionally recorded among cavity-nesting polygynous species, but the clutch is usually twice the normal size and only one female incubates at a time (e.g. Pied Flycatcher Ficedula hypoleuca: Holmes 1990). Polygyny occurs regularly among Blue Tits (Dhondt 1987). Instances of three adults feeding the young in a single nest (Wassmann 1989;
Wassmann & Butz 1990) were also assumed to involve polygyny, even though it was not known if more than one female had incubated, the sexes of the birds were unknown and both clutches were of normal size for a single clutch; brood adoption by an additional adult feeding the nestlings cannot be ruled out in these cases. My observation could be a result of polygyny, particularly if the third (unsexed) tit was a male, although, given the abnormally small clutch size, it is unlikely that both females had laid in the nest. It is also unusual for two female Blue Tits to tolerate each other’s presence during incubation; indeed, they will occasionally kill intruding conspecifics in nestboxes.

An alternative explanation is that pairs of territorial species may occasionally share nest sites if these become limited. Willis (1935) and Tuchet-Jesson (1950) both recorded two pairs of Blue Tits sharing a site, but using separate nest cups. Hudde (1988) reported two female Blue Tits simultaneously incubating the same clutch, and two males subsequently fed the young; in this case, the density of nesting Blue Tits was three times higher than in the previous three years, so nest-site availability may have been a limiting factor, forcing two pairs to share a nest. Although the density of breeding tits in Marley in 1988 was higher than in previous years (by a factor of 1.5), plenty of nest sites still remained available.

A third possibility is the formation of a female-female pair. This has occurred with Red-backed Shrikes Lanius collurio, and can result in simultaneous incubation by both females (Owen 1946; Pounds 1972). This seems the most plausible explanation for this instance of nest-sharing by Blue Tits in Marley Wood, and it could explain why the eggs were infertile and the clutch abnormally small.

Jeremy K. Blakey
Edward Grey Institute of Field Ornithology, Department of Zoology, South Parks Road, Oxford OX1 3PS

References
HOLMES, P. R. 1990. Female Pied Flycatchers sharing the same nestbox. Ringing & Migration 11: 42.